СИНЕРГЕТИКА

СИНЕРГЕТИКА
(от греч. sinergeia - совместное действие) - научное направление, исследующее процессы самоорганизации в природных, социальных и когнитивных системах. С. как физикоматематическая дисциплина, формирующаяся с начала 70-х гг. XX столетия, имеет своей целью разработку и широкое применение концептуально-математического аппарата, общего для изучения нелинейных систем различной природы. Методы С. - это сочетание аналитических подходов к решению нелинейных уравнений с математическим (в т. ч. компьютерным) экспериментом над моделями изучаемых систем.

Класс систем, способных к самоорганизации, - это открытые и нелинейные системы, удаленные от состояния термодинамического равновесия (сильно неравновесные). Среди физических систем к ним принадлежат неравновесные фазовые переходы, кооперативные эффекты в лазерах, переходы типа "беспорядок - порядок" в жидкостях (конвективная неустойчивость) и др. Среди химических систем - автокаталитические и кросс-каталитические реакции, в которых происходят возникновение пространственных и временных структур, колебания концентрации и т. д. Среди биологических систем - клетки и их ассоциации, нейронные системы, поведение животных в течение жизненного цикла и поведение ассоциаций животных (например, систем "хищник - жертва") и др. Среди социальных систем - поведение человека  и человеческих групп в данной среде, экономические и другие большие системы (в т. ч. наука) и т. д. При этом С. использует методологию, принципиально отличающуюся от методологии кибернетики. Если кибернетическая система организуется под действием команд управляющего органа, то в синергетической системе организация возникает без управляющих команд, за счет локальных взаимодействий между элементами, которые "запускают" внутренний механизм самоорганизации. Как заметил немецкий физик-теоретик Г. Хакен, один из основателей С., в лазере нет никого, кто бы мог давать такие управляющие команды атомам.

В становлении С. как науки важнейшие функции ее теоретических источников выполнили неравновесная термодинамика и теория динамических систем. В развитии термодинамики выделяют три логически и исторически важных этапа: 1) классический равновесный (термостатика) - 1824 - 1930 гг.; 2) слабо неравновесный (линейный) - с 1931 г. (соотношения взаимности Л. Онсагера); 3) сильно неравновесный (нелинейный). Важнейший результат последнего этапа - теорема П. Гленсдорфа- И. Пригожина (1971 г.), названная в силу ее общности принципом физической эволюции. Если на первых двух этапах развития термодинамики удавалось теоретически сконструировать функции состояния (к ним относятся, например, температура, внутренняя энергия, энтропия и др.), которые однозначно определяют эволюцию систем соответствующего класса, то установление теоремы Гленсдорфа - Пригожина показало, что в общем случае, включающем сильно неравновесные системы, однозначно определить эволюцию невозможно, т. е. для указанных систем существует несколько альтернативных путей развития.

Необходимо отметить полученные в термодинамике результаты, имеющие важное мировоззренческое значение. Как известно, закон возрастания энтропии (второе начало термодинамики) применим только к замкнутым системам, которые не обмениваются веществом с окружающей средой. Это означает несостоятельность гипотезы "тепловой смерти" Вселенной. В современной физике Вселенная как целое рассматривается не как замкнутая система, а как открытая система, находящаяся в переменном гравитационном поле (Л. Д. Ландау, Е. М. Лифшиц). Существуют два принципиально различных процесса эволюции: процессы в замкнутых системах ведут к термодинамическому равновесию (физическому хаосу) - состоянию с максимальной энтропией, а процессы в открытых системах могут быть процессами самоорганизации, в результате которых возрастает степень упорядоченности и происходит усложнение структур. Все реальные системы - открытые. Т. о., благодаря теореме Гленсдорфа - Пригожина, были преодолены спекулятивные представления о принципиальной противонаправленности физической и биологической эволюции. Принцип физической эволюции, выявив границы предшествующего развития термодинамики, обосновал несостоятельность универсалистских претензий на открытие единой формулы термодинамической эволюции. Итак, неравновесная термодинамика сыграла первостепенную роль в открытии совершенно нового проблемного поля - явлений самоорганизации. Эта роль состоит прежде всего в снятии распространенных классических термодинамических запретов на самоорганизацию. Однако, как полагают многие специалисты, термодинамика не дает ключей к решению проблем самоорганизации.

Второй источник возникновения С. - это теория динамических систем, основы которой были созданы в конце XIX в. трудами А. М. Ляпунова и А. Пуанкаре. Эволюцию динамической системы описывают решения системы обыкновенных дифференциальных уравнений, которые имеют наглядную геометрическую интерпретацию в виде семейства интегральных кривых. Например, совокупность решений нормальной системы двух уравнений интерпретируется как множество траекторий на фазовой плоскости (в общем случае - многомерном фазовом пространстве). Множество траекторий называют фазовым портретом системы. Это понятие характеризует самобытность (самость) системы. Поведение траекторий исследуют методами качественной (геометрической) теории дифференциальных уравнений. Существуют три типа траекторий: замкнутые (циклы), незамкнутые и точки покоя (в которых искомые функции обращаются в постоянные).

Понятие "точка бифуркации" описывает локальное поведение траектории динамической системы. При определенных условиях зависимость решения уравнения от параметра может стать неоднозначной; в этом случае данное значение параметра есть точка бифуркации (или ветвления) этого решения. Поскольку график имеет форму вилки (англ. - fork), само явление называется "бифуркацией" Ветвление решений уравнения (т. е. траекторий в фазовом пространстве) интерпретируют как неединственность (альтернативность, многовариантность) путей эволюции динамической системы. Множество, состоящее из точек бифуркации, называется катастрофическим. Классификация неустойчивостей устанавливается в теории катастроф французского математика Р. Тома. В социально-гуманитарных исследованиях понятие "катастрофа" используют в метафорическом, нематематизированном смысле.

Аттрактор (от англ. attract - притягивать), или область притяжения, - это множество точек фазового пространства, к которому с течением времени "притягивается" траектория динамической системы. Математики Д. Рюэль и Ф. Такенс в 1971 г. установили, что для определенного класса нелинейных динамических систем характерны скачкообразные переходы к апериодическому движению через несколько многопериодических режимов. В этом случае говорят о потере регулярности и переходе детерминированной системы в стохастический (вероятностный) режим, который характеризуется наличием странного аттрактора. Фазовый портрет странного аттрактора - ограниченная область фазового пространства, в которой происходят случайные блуждания. Наличие странного аттрактора есть критерий существования стохастического режима для данной динамической системы.

Впервые предположение о подобном механизме перехода "порядок - беспорядок" - для перехода от ламинарного течения жидкости к турбулентному - высказал Л. Д. Ландау в 1944 г. Приоритет открытия странных аттракторов принадлежит американскому метеорологу Э. Лоренцу (1963), изучавшему картину развития турбулентности на модели симметрично нагреваемой вращающейся жидкости, однако широко известны странные аттракторы стали после работ Д. Рюэля и Ф. Такенса. Весть об их открытии произвела впечатление шока в научном сообществе: совершенно непонятно было происхождение случайного поведения для систем, описываемых детерминистскими уравнениями. Г. Хакен, учитывая данное обстоятельство, определяет понятие "хаос" как нерегулярное движение, описываемое детерминистскими уравнениями.

Хаотическое движение в указанном смысле обнаруживается в системах различной природы. Так, еще в конце XIX в. А. Пуанкаре установил нерегулярное движение, изучая проблему трех тел в небесной механике. При определенных условиях астероиды или кометы ведут себя принципиально стохастически и описываются странными аттракторами. Хаотическое поведение наблюдается также в электронных приборах, в химических реакциях, в динамике популяций животных и т. д. Т. о., с т. зр. С., в окружающем мире главенствующую роль играют неравновесность и неустойчивость.

Возникновение С. характеризуется установлением неразрывных связей между статистической физикой и теорией динамических систем, что проявляется, в частности, в терминологии и взаимообогащающем обмене идеями. Для замкнутых термодинамических систем энтропия ведет себя как аттрактор. Такая система флуктуирует около состояния-аттрактора (флуктуация - это отклонение величины от ее среднего значения). В сильно неравновесных состояниях флуктуации становятся аномально большими (т. е. сравнимыми со средними значениями), и они определяют исход эволюции системы. Когда система, эволюционируя, достигает точки бифуркации, становится невозможным ее описание с помощью детерминистских уравнений. Флуктуации вынуждают систему выбрать ту ветвь, по которой будет происходить дальнейшая эволюция системы. Переход через бифуркацию и выбор пути эволюции - такие же случайные процессы, как бросание монеты или игральной кости. Флуктуации разрушают старую структуру, а после того как один из многих возможных путей эволюции выбран, возникает, по терминологии И. Пригожина, новая диссипативная структура и вновь вступает в силу детерминизм - и так до следующей точки бифуркации (диссипация - это рассеяние энергии; для поддержания диссипативных структур требуется больше энергии, чем для поддержания более простых структур, на смену которым они приходят). "Порядок через флуктуации" - таким термином обозначает И. Пригожий описанный тип поведения систем.

Рассмотренные понятия и открытия С. приводят к коренному переосмыслению целого ряда традиционных философских концепций. Прежде всего изменяются представления о механизме развития: развитие происходит через неустойчивость, через случайность, через бифуркации. "Без неустойчивости нет развития", - отмечает С. П. Курдюмов, глава отечественной школы С. Синергетическим системам нельзя навязывать пути их развития - возможно лишь самоуправляемое развитие (это применимо и для экономических реформ). Далее, требует переосмысления такая древняя мифологема и философема, как "хаос". С. установила возможность спонтанного возникновения порядка из хаоса в результате процесса самоорганизации. Следовательно, хаос выступает созидающим началом, конструктивным механизмом развития (в этой связи проблематизируется роль демиурга). В различных условиях у одной и той же системы могут наблюдаться различные формы самоорганизации. Однако понятие "хаос" остается недостаточно четко определенным. И. Пригожин подчеркивает, что не следует смешивать равновесный тепловой хаос с неравновесным турбулентным хаосом. Назрела необходимость разработки теории, позволяющей количественно оценивать степень упорядоченности структур, возникающих из хаоса. Важные результаты в этом направлении получены отечественными учеными (А. Н. Колмогоров, Н. С. Крылов, Ю. Л. Климонтович и др.).

Весьма высока мировоззренческая значимость результатов С., связанных с категориями "необходимость" и "случайность". Ранее уже отмечалась первостепенная роль случайности в развитии. Существенно возрастает онтологический статус случайности: в окружающем мире, с т. зр. С., действуют и необходимость, и случайность, которые связаны между собой отношением не иерархии, а со-действия.

Хотя случайность играет существенную роль вблизи точки бифуркации, "мы никогда не знаем заранее, когда произойдет следующая бифуркация", - подчеркивает И. Пригожин. Вследствие этого для неустойчивых систем существуют принципиальные границы предсказаний и контроля. Поведение таких систем непредсказуемо глобально (странный аттрактор) и локально (бифуркации) отнюдь не потому, что человек не имеет средств рассчитать и проследить их фазовые траектории, а потому, что таково устройство мироздания. Т о., случайность понимается не как еще непознанная необходимость и не как точка пересечения независимых процессов, а как имманентная и неустранимая для поведения синергетической системы. Тем самым окончательно преодолеваются лапласовский детерминизм и концепции фатализма. Однако отдельные исследователи (например, Р. Том) критикуют такое понимание случайности. Весьма показательно, что к выводу о возрастании роли случайности независимо от С. пришла также космомикрофизика (А. Д. Сахаров, М. А. Марков и др.).

Очевидно, что наличие нескольких альтернативных путей развития для самоорганизующихся систем значительно ослабляет позиции эсхатологии, исторического пессимизма и катастрофизма Факт усиления флуктуации вблизи точек бифуркации свидетельствует об эффективности малых (резонансных) воздействий на систему. Для социальной философии это означает, по-видимому, что в "минуты роковые" для общества, находящегося в неустойчивом состоянии, усилия отдельной личности отнюдь не бесполезны ("и один в поле воин"). Эффективность малых воздействий, по мнению С. П. Курдюмова и Е. И. Князевой, была угадана родоначальником даосизма Лао-цзы. Эти исследователи подчеркивают роль восточных религиозно-философских систем (буддизм, даосизм, конфуцианство) в мировоззренческой интерпретации открытий С. В истории русской философии, по мнению С. С. Хоружего, на смену парадигме всеединства приходит парадигма синергии, истоки которой он обнаруживает в восточном христианстве (исихазм), а также в философии Гете. При этом синергия понимается как согласованное действие божественного и человеческого начал. И. Пригожин подчеркивает, что современное видение природы претерпевает радикальные изменения в сторону множественности, темпоральности и сложности. В интерпретации этих изменений он исходит из традиций европейской метафизики (А. Бергсон, А. Уайтхед, М. Хайдеггер)

С. являет собой один из образцов постнеклассической науки, с присущими ей тенденциями к антифундаментализации, плюрализации, экстернализации Об этом свидетельствует, в частности, конкуренция различных исследовательских программ, нацеленных на познание процессов самоорганизации, которые имеют фундаментальную практическую и социально-культурную значимость.

В. П. Прыткое


Современный философский словарь. — М.: Панпринт. . 1998.

Игры ⚽ Нужен реферат?
Синонимы:

Полезное


Смотреть что такое "СИНЕРГЕТИКА" в других словарях:

  • СИНЕРГЕТИКА — (от греч. synergeia сотрудничество, содействие, соучастие) междисциплинарное направление научных исследований, в рамках которого изучаются общие закономерности процессов перехода от хаоса к порядку и обратно (процессов самоорганизации и… …   Философская энциклопедия

  • СИНЕРГЕТИКА — область науч. исследований, целью к рых является выявление общих закономерностей в процессах образования, устойчивости и разрушения упорядоч. временных и пространств. структур в сложных неравновесных системах разл. природы (физ., хим., биол.,… …   Физическая энциклопедия

  • синергетика —         СИНЕРГЕТИКА (от греч. cruv Epyia сотрудничество, содействие, соучастие) междисциплинарное направление научных исследований, в рамках которого изучаются общие закономерности процессов перехода от хаоса к порядку и обратно (процессов… …   Энциклопедия эпистемологии и философии науки

  • Синергетика — (гр. sinergeia – көмектесу, келісіп қимылдау, біріккен іс – әрекет) – ашық типтегі сызықтық емес кері байланыстары бар жүйелердің эволюциясы мен өзін өзі ұйымдастыруын зерттейтін ғылым (қазіргі ғылымның бағыты). Оның қалыптасуына И. Пригожин, Г.… …   Философиялық терминдердің сөздігі

  • СИНЕРГЕТИКА —         (совместная деятельность)         наука о процессах самоорганизации в природе и об ве. Предметом С. являются механизмы спонтанного образования и сохранения сложных систем, особенно находящихся в отношении устойчивого неравновесия со… …   Энциклопедия культурологии

  • СИНЕРГЕТИКА — современная теория самоорганизации, новое мировидение, связываемое с иследованием феноменов самоорганизации, нелинейности, неравесновесности, глобальной эволюции, изучением процессов становления «порядка через хаос» (Пригожин), бифуркационных… …   Новейший философский словарь

  • СИНЕРГЕТИКА — (от греч. synergetikos совместный согласованно действующий), научное направление, изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологической, физико химической и др.) благодаря интенсивному… …   Большой Энциклопедический словарь

  • СИНЕРГЕТИКА — [< англ. synergy согласованная, совместная работа < гр. synergein работать вместе] 1) наука о кооперации в трудовой деятельности; 2) учение о системах в науке и практике. Словарь иностранных слов. Комлев Н.Г., 2006 …   Словарь иностранных слов русского языка

  • синергетика — сущ., кол во синонимов: 1 • синергизм (5) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • СИНЕРГЕТИКА — (от греч. synergia сотрудничество, содействие) англ. synergetics; нем. Synergetik. Междисциплинарное направление научных исследований, задачей к рого является познание принципов самоорганизации различных систем. С. предполагает картину мира,… …   Энциклопедия социологии

  • Синергетика — научное направление, исследующее процессы самоорганизации, устойчивости и распада структур различной природы, формирующихся в системах, далеких от равновесия. Синергетические связи учитываются в прогностических моделях оценки масштабов… …   Словарь черезвычайных ситуаций


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»